Exam Symmetry in Physics

Date June 22, 2021
Time $\quad 9: 00-11: 00$
Lecturer D. Boer

- Write your name and student number on every separate sheet of paper
- All subquestions (a, b, etc) of the three exercises have equal weight
- Illegible answers will be not be graded
- Good luck!

Exercise 1

Consider the methane molecule CH_{4} depicted in the figures.

(a) Identify all rotations that leave the methane molecule invariant. These symmetry transformations form the group G_{M}. Note that reflections do not need to be considered.
(b) Divide the elements of G_{M} into conjugacy classes using geometric arguments and construct the character table of G_{M}. Explain how the entries are obtained.
(c) Show whether G_{M} allows in principle for a permanent electric dipole moment, a permanent magnetic dipole moment or neither. Explain how the answer can be understood from the molecule and its symmetry transformations.

Exercise 2

Consider the symmetric group S_{3} consisting of the permutations of three objects and view the three basis vectors of R^{3} as the three objects that are permuted. This leads to the following three-dimensional rep D^{L} of S_{3} :

$$
D^{L}(c)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad D^{L}(b)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Here the rep is only specified for the two generators c and b of S_{3} which in cycle notation are given by $c=(123)$ and $b=(12)$.
(a) Show that D^{L} indeed forms a representation of S_{3} (for example by using the presentation of the group).
(b) Show using Schur's lemma that D^{L} is not an irrep of S_{3} and decompose D^{L} into irreps of S_{3} using the character table of S_{3}.
(c) Decompose $D^{L} \otimes D^{L}$ into irreps of S_{3} using the character table of S_{3}.

Exercise 3

Consider the group $O(2)$ of real orthogonal 2×2 matrices and the group $U(1)$ of unitary 1×1 matrices.
(a) Write down explicitly all elements of $O(2)$ in its defining representation.
(b) Construct a homomorphism from $O(2)$ to $U(1)$ and determine its kernel.
(c) Consider two vectors in $\mathrm{R}^{2}: \vec{v}=\left(v_{x}, v_{y}\right)$ and $\vec{w}=\left(w_{x}, w_{y}\right)$. Demonstrate that the quantity $v_{x} w_{y}-v_{y} w_{x}$ behaves like a pseudoscalar in R^{2}.

